China best High quality Timing Belt Guide Pulley Tensioner Pulley  for  CITROEN  XSARA Break (N2) 1.4 i   OEM  957726 belt pulley

Product Description

MIC NO OEM.NO APPLICATION YEAR PHOTO
TB34PG9301 957726
082990
9642929880
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 bivalent        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i (MBKFX, MBKFW)        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i bivalent (MBKFW)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.1 i (MFHDZ, MFHFX)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 bivalent        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i (MFKFX, MFKFW, GJKFWB, GJKFWC, GFKFWC)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i bivalent (MFKFW)        
CITROEN  C2 (JM_) 1.1        
CITROEN  C2 (JM_) 1.4        
CITROEN  C3 I (FC_, FN_) 1.1 i        
CITROEN  C3 I (FC_, FN_) 1.4 i        
CITROEN  C3 I (FC_, FN_) 1.4 i Bivalent        
CITROEN  C3 II (SC_) 1.1 i        
CITROEN  C3 II (SC_) 1.4        
CITROEN  C3 Pluriel (HB_) 1.4        
CITROEN  NEMO Box (AA_) 1.4        
CITROEN  NEMO Estate 1.4        
CITROEN  SAXO (S0, S1) 1.1 X,SX        
CITROEN  XSARA (N1) 1.4 i        
CITROEN  XSARA Break (N2) 1.4 i        
CITROEN  XSARA Coupe (N0) 1.4 i        
FIAT  FIORINO Box Body/Estate (225_) 1.4 (225BXA1A, 225BXF1A)        
FIAT  QUBO (225_) 1.4 (225AXA1A)        
PEUGEOT  1007 (KM_) 1.4        
PEUGEOT  106 II (1A_, 1C_) 1.1 i        
PEUGEOT  206 Hatchback (2A/C) 1.1        
PEUGEOT  206 Hatchback (2A/C) 1.1 i        
PEUGEOT  206 Hatchback (2A/C) 1.4 i        
PEUGEOT  206 Hatchback (2A/C) 1.4 LPG        
PEUGEOT  206 Saloon 1.4        
PEUGEOT  206 SW (2E/K) 1.1        
PEUGEOT  206 SW (2E/K) 1.4        
PEUGEOT  206+ (2L_, 2M_) 1.1        
PEUGEOT  206+ (2L_, 2M_) 1.4 i        
PEUGEOT  207 (WA_, WC_) 1.4        
PEUGEOT  207 SW (WK_) 1.4        
PEUGEOT  306 (7B, N3, N5) 1.1        
PEUGEOT  306 (7B, N3, N5) 1.4 SL        
PEUGEOT  306 Break (7E, N3, N5) 1.4        
PEUGEOT  306 Hatchback (7A, 7C, N3, N5) 1.1        
PEUGEOT  307 (3A/C) 1.4        
PEUGEOT  BIPPER (AA_) 1.4        
PEUGEOT  BIPPER Tepee 1.4        
PEUGEOT  PARTNER Box (5_, G_) 1.1        
PEUGEOT  PARTNER Box (5_, G_) 1.4        
PEUGEOT  PARTNER Box (5_, G_) 1.4 BiFuel        
PEUGEOT  PARTNER Combispace (5_, G_) 1.1        
PEUGEOT  PARTNER Combispace (5_, G_) 1.4
1996-2008
2002-2011
1996-2011
2003-2005
1996-2008
2002-2011
1996-2011
2003-2008
2003-2012
2003-2009
2002-
2002-2571
2002-
2009-2013
2009-2016
2003-
2008-
2009-
1996-2003
1997-2005
1997-2005
1998-2005
2007-
2008-
2005-
1996-2004
1998-2000
1998-2007
1998-2012
2006-2007
2007-
2002-
2002-2007
2009-2013
2009-2013
2006-2013
2007-2012
1994-2001
1994-2001
1997-2002
1993-2001
2000-2003
2008-
2008-
1996-2005
1996-2015
2003-2006
1996-2002
1996-2015

  

 

 

After-sales Service: Online Technical Support
Warranty: One year
Car Make: CITROEN
Car Model: XSARA Break (N2) 1.4 i
Sample: Available
Application: XSARA Break (N2) 1.4 i
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pulley

How does the diameter of a pulley affect its mechanical advantage?

The diameter of a pulley plays a significant role in determining its mechanical advantage. Mechanical advantage refers to the ratio of the output force or load to the input force or effort applied to the pulley system. Here’s how the diameter of a pulley affects its mechanical advantage:

1. Larger Diameter: When the diameter of a pulley increases, the mechanical advantage also increases. A larger diameter means that the circumference of the pulley is greater, allowing a longer length of rope or belt to be wrapped around it. As a result, a larger pulley requires less effort force to lift a given load. This is because the load is distributed over a greater length of rope or belt, reducing the force required to overcome the load.

2. Smaller Diameter: Conversely, when the diameter of a pulley decreases, the mechanical advantage decreases. A smaller diameter means that the circumference of the pulley is reduced, resulting in a shorter length of rope or belt wrapped around it. As a result, a smaller pulley requires more effort force to lift a given load. This is because the load is concentrated over a shorter length of rope or belt, requiring a greater force to overcome the load.

It’s important to note that while a larger diameter pulley offers a greater mechanical advantage in terms of reducing the effort force required, it also results in a slower speed of the load being lifted. This is because the longer length of rope or belt requires more input distance to achieve a given output distance. On the other hand, a smaller diameter pulley offers a lower mechanical advantage but allows for a faster speed of the load being lifted.

The mechanical advantage of a pulley system can be calculated using the formula:

Mechanical Advantage = Load / Effort

Where “Load” refers to the weight or force being lifted and “Effort” refers to the force applied to the pulley system. By adjusting the diameter of the pulley, the mechanical advantage can be optimized to suit the specific requirements of the application, balancing the effort force and speed of the load being lifted.

pulley

How do pulleys contribute to the functioning of bicycles and motorcycles?

Pulleys play important roles in the functioning of both bicycles and motorcycles, aiding in power transmission, speed control, and overall mechanical efficiency. Here’s how pulleys contribute to the operation of these vehicles:

1. Bicycles:

– Derailleur System: In most modern bicycles, pulleys are used in the derailleur system. The derailleur is responsible for shifting the bicycle chain between different gears on the front and rear sprockets. Pulleys, often referred to as jockey wheels, are positioned in the derailleur to guide and tension the chain as it moves between gears. They ensure smooth and precise shifting, allowing the rider to adapt to various terrains and maintain an optimal pedaling cadence.

– Belt Drive Systems: Some bicycles use a belt drive instead of a traditional chain drive. Belt drives employ a pulley system that consists of a front pulley attached to the pedal crank and a rear pulley attached to the rear wheel hub. The belt is wrapped around these pulleys, transferring power from the rider’s pedaling motion to propel the bicycle forward. Pulleys in belt drive systems enable efficient power transfer, reduce maintenance needs, and provide a quieter and cleaner alternative to chain drives.

2. Motorcycles:

– Clutch System: Pulleys, known as clutch pulleys, are utilized in motorcycle clutch systems. The clutch connects the engine to the transmission and allows the rider to engage or disengage power transmission to the rear wheel. When the clutch lever is pulled, the clutch pulley separates the engine’s rotational motion from the transmission, disengaging power transfer. Releasing the clutch lever brings the pulley back into contact, engaging power transmission and enabling the motorcycle to move.

– Variable Transmission Systems: Some motorcycles employ pulleys in variable transmission systems, such as continuously variable transmissions (CVT). CVTs use a pair of pulleys connected by a belt or chain. By changing the diameter of the pulleys, the CVT adjusts the gear ratio continuously, providing seamless and efficient power delivery across a wide range of speeds. Pulleys in variable transmission systems contribute to smooth acceleration, improved fuel efficiency, and enhanced riding comfort.

– Drive Belt Systems: Pulleys are also utilized in motorcycles equipped with belt drive systems. Similar to bicycles, these systems consist of a front pulley connected to the engine’s crankshaft and a rear pulley connected to the rear wheel. The belt runs around these pulleys, transferring power from the engine to the rear wheel. Belt drive systems offer advantages such as reduced maintenance, quieter operation, and smoother power delivery compared to traditional chain drives.

Overall, pulleys are integral components in bicycles and motorcycles, contributing to smooth gear shifting, efficient power transmission, and improved overall performance. Whether in derailleur systems, belt drive systems, clutch systems, or variable transmission systems, pulleys play a vital role in enhancing the functionality and ride experience of these vehicles.

pulley

How does a fixed pulley differ from a movable pulley?

A fixed pulley and a movable pulley are two distinct types of pulleys that differ in their design and functionality. Here’s a detailed explanation of their differences:

1. Design and Attachment: A fixed pulley is attached to a stationary structure, such as a ceiling or wall, using a mounting bracket or other means. It remains fixed in place and does not move during operation. In contrast, a movable pulley is attached to the load being moved and moves along with it. It is typically suspended by a rope or cable and can freely move up and down.

2. Mechanical Advantage: When it comes to mechanical advantage, a fixed pulley does not provide any advantage. It changes the direction of the force applied but does not reduce the effort required to lift the load. On the other hand, a movable pulley provides mechanical advantage by reducing the effort needed to lift the load. It distributes the load between the rope segments attached to the movable pulley and the fixed point, making it easier to lift heavy objects.

3. Force Distribution: In a fixed pulley, the force applied to one end of the rope or belt is redirected to change the direction of the force. The load is lifted by pulling the opposite end of the rope. In this case, the force required to lift the load is equal to the weight of the load itself. In a movable pulley, the load is attached to the movable pulley itself. The force required to lift the load is reduced because the weight of the load is distributed between the rope segments attached to the movable pulley and the fixed point.

4. Directional Change: Both fixed and movable pulleys are capable of changing the direction of the applied force. However, the primary function of a fixed pulley is to change the direction of force, while a movable pulley combines force direction change with mechanical advantage. The movable pulley allows the operator to exert force in a more convenient direction while requiring less effort to lift the load.

5. Applications: Fixed pulleys are commonly used in combination with other pulleys to create more complex systems, such as block and tackle arrangements. They are often used in scenarios where the primary objective is to change the direction of force. Movable pulleys, on the other hand, are frequently used in systems that require mechanical advantage or a reduction in the effort needed to lift heavy objects. They are often found in applications such as lifting systems, cranes, and elevators.

Overall, the key differences between a fixed pulley and a movable pulley lie in their design, mechanical advantage, force distribution, and applications. While a fixed pulley primarily changes the direction of force, a movable pulley combines force direction change with mechanical advantage, making it easier to lift heavy loads.

China best High quality Timing Belt Guide Pulley Tensioner Pulley  for  CITROEN  XSARA Break (N2) 1.4 i   OEM  957726   belt pulley	China best High quality Timing Belt Guide Pulley Tensioner Pulley  for  CITROEN  XSARA Break (N2) 1.4 i   OEM  957726   belt pulley
editor by CX

2023-09-22

pulley spacer

As one of leading pulley spacer manufacturers, suppliers and exporters of mechanical products, We offer pulley spacer and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of pulley spacer

Recent Posts